Year 12 Pure	
Teacher A	Teacher B
Algebra - Expanding brackets - Factorising - Indices - Surds - Rationalising surds - Problem solving and surds	Quadratic functions - Factorise quadratic function - Completing the square and sketching graphs - Use quadratic formula - Sketching quadratic graphs - Discriminant - Modelling quadratic equations and problem solving
Coordinate Geometry - Coordinates of midpoint - Length of a line segment - Gradient of a line - Equation of straight line - Gradient of parallel and perpendicular lines - Equation of parallel and perpendicular line - Coordinate geometry and problem solving	Equations and Inequalities - Simultaneous equations in two variables - Simultaneous with one linear and one quadratic function - Simultaneous equation and the application of discriminant - Simple linear inequalities - Quadratic inequalities and graphical demonstration of solutions - Solution satisfying two or more inequalities - Regions and inequalities
Initial Assessment (Suitability Test)	

Circle Geometry

- Equation of circle
- Completing the square to find radius and centre of a circle
- Intersection of a circle and straight lines
- Properties of a circle
- Angles in a semi-circle is a right angle
- A straight line from the centre is a perpendicular bisector of a chord
- A radius is perpendicular to a tangent at the point of contact
- Equation of tangents and normal to a circle
- Modelling with circles

Graphs and transformation

- Sketch cubic graphs
- Sketch quartic graphs
- Other types of graphs
- Intersection of graphs to solve equations
- Reflection of functions
- Translation of functions
- Stretching functions

Assessment 2

Trigonometry

- Area of triangle
- Sine rule
- Cosine rule
- Trigonometric graphs
- The trig identity $\tan x=\frac{\sin x}{\cos x}$
- Use the trig identity $\sin ^{2} x+\cos ^{2} x=1$
- Solve trig equations in a given interval including quadratic equations involving multiple of unknown angles

Differentiation

- Differentiation of a term
- Differentiation of a polynomial
- Differentiation from the first principle
- Sketch gradient function of a function
- Equation of tangents and normal
- Second derivatives
- Stationary point
- Nature of stationary point
- Modelling with differentiation

Polynomial

- Simplifying algebraic fractions
- Dividing polynomials
- The factor theorem
- The remainder theorem
- Factorising polynomial
- Sketching polynomial functions
- Solve equations
- Algebraic proofs

Binomial Expansion

- Factorial and combination
- Binomial expansion using pascal triangle
- Binomial expansion using formula
- Problem solving and binomial expansion
Exponentials
- Exponential graphs, $y=a^{x}$ and $y=e^{x}$

Vectors

- Vectors in two dimensions

- Differentiate e^{kx} - Laws of logarithm - Solve equations with exponential terms - Parameters of exponential functions - Exponential growth and decay	- Magnitude and direction of a vector - Adding and subtracting vectors - Scalar multiplication - Distance between two position vectors - Modelling with vectors
	Integration - Know integration as the reverse of differentiation - Indefinite integral - Definite integral - Equation of a curve from its gradient - Area under a curve
Mock Exam	

Year 12 Applied

Teacher A - Statistics	Teacher B- Mechanics
Data presentation and interpretation - Measure of location (mean, median and mode) - Measure of variation (standard deviation, variance, range and interquartile range) - Interpret and draw inferences from measure of location and variation. - Understand and apply coding to measure of location and spread	Quantities and units in mechanics - Units of measurement of time, mass, displacement, velocity, acceleration, force and weight - Difference between position, displacement and distance - Difference between mass and weight - Derive velocity, acceleration an - Mathematical modelling - Assumptions in mechanics
Data presentation and interpretation (part 2) - Draw and interpret box plot, cumulative frequency and histogram - Identify and interpret possible outlier - Compare two sets of data - Select and critique data presentation techniques - Clean up data including missing data, outlier and error	Kinematics 1 - Language of kinematics - Speed time graph - Velocity time graphs - Displacement time graph - Derive and apply the SUVAT formula - Kinematics problems with constant acceleration - Vertical motion under gravity
Correlation and regression	Forces and Newton

- Interpret scatter diagrams of bivariate date
- Interpret Regression lines for bivariate data
- Make predictions with the regression line and understand its limitation
- Understand informal interpretation of correlation
- Know that correlation does not imply causation
- Outlier and scatter graph/regression
- Critique data presentation techniques in the context of the problem
- Types of forces
- Forces in equilibrium
- Newton's first law of motion
- Application of Newton's second law of motion
- Apply Newton's third law of motion

Probability

- Mutually and independent events in calculating probabilities
- Linking discrete and continuous distributions
- Venn diagrams and its constituent parts
- Probability tree diagrams
(1)

Statistical distributions

- Discrete probability distribution
- Binomial distribution
- Calculate probabilities using binomial distribution

Statistical sampling

- Population and sampling
- Probabilistic sampling techniques, advantages and disadvantages
- Non-probabilistic techniques, advantages, and disadvantages
- Know how to use samples to make inferences about the population
- Select and critique a sampling techniques in the context of solving a statistical problems

- Know that the use of different types of sample can lead to different conclusions about a population	
Statistical hypothesis testing - Language of statistical hypothesis testing developed through binomial distribution - Conduct a statistical hypothesis testing for proportion in the binomial distribution and interpret results - Understand that the sample is being used make an inference about the population - Appreciate the fact that the significance level is the probability of rejecting the null hypothesis	
Mock 2 Exam	

