Teacher A	Teacher B
lgebra	Quadratic functions
 Expanding brackets 	- Factorise quadratic function
- Factorising	- Completing the square and sketching graphs
- Indices	- Use quadratic formula
- Surds	- Sketching quadratic graphs
- Rationalising surds	- Discriminant
- Problem solving and surds	- Modelling quadratic equations and problem
	solving
Coordinate Geometry	Equations and Inequalities
- Coordinates of midpoint	- Simultaneous equations in two variables
- Length of a line segment	- Simultaneous with one linear and one
- Gradient of a line	quadratic function
- Equation of straight line	- Simultaneous equation and the application
- Gradient of parallel and perpendicular	of discriminant
lines	- Simple linear inequalities
- Equation of parallel and perpendicular	- Quadratic inequalities and graphical
line	demonstration of solutions
- Coordinate geometry and problem	- Solution satisfying two or more
solving	inequalities
	- Regions and inequalities

Circle Geometry	Graphs and transformation
Equation of circle	- Sketch cubic graphs
 Completing the square to find radius and 	 Sketch quartic graphs
centre of a circle	- Other types of graphs
 Intersection of a circle and straight lines 	 Intersection of graphs to solve equations
C C	 Reflection of functions
Properties of a circle	- Translation of functions
- Angles in a semi-circle is a right angle	- Stretching functions
- A straight line from the centre is a	
perpendicular bisector of a chord	
- A radius is perpendicular to a tangent at	
the point of contact	
• Equation of tangents and normal to a circle	
Modelling with circles	
Asses	ssment 2
Trigonometry	Polynomial
- Area of triangle	- Simplifying algebraic fractions
- Sine rule	 Dividing polynomials
- Cosine rule	- The factor theorem
- Trigonometric graphs	- The remainder theorem
	 Factorising polynomial
$=$ The dig identity tunx $= \frac{1}{\cos x}$	
- Use the trig identity $sin^2x + cos^2x = 1$	Sketching polynomial functionsSolve equations
- Solve trig equations in a given interval	
including quadratic equations involving	- Algebraic proofs
multiple of unknown angles	
Differentiation	Binomial Expansion
- Differentiation of a term	- Factorial and combination
- Differentiation of a polynomial	- Binomial expansion using pascal triangle
- Differentiation from the first principle	- Binomial expansion using formula
- Sketch gradient function of a function	- Problem solving and binomial expansion
- Equation of tangents and normal	
- Second derivatives	
- Stationary point	
- Nature of stationary point	
- Modelling with differentiation	
Exponentials	Vectors
- Exponential graphs, $y = a^x$ and $y = e^x$	- Vectors in two dimensions

Mock Exam		
	- Area under a curve	
	- Equation of a curve from its gradient	
	- Definite integral	
	- Indefinite integral	
	differentiation	
	- Know integration as the reverse of	
	Integration	
- Exponential growth and decay	- Modelling with vectors	
- Parameters of exponential functions	- Distance between two position vectors	
- Solve equations with exponential terms	- Scalar multiplication	
- Laws of logarithm	- Adding and subtracting vectors	
- Differentiate e ^{kx}	- Magnitude and direction of a vector	

Year 12 Applied		
Teacher A - Statistics	Teacher B- Mechanics	
Data presentation and interpretation	Quantities and units in mechanics	
- Measure of location (mean, median and	- Units of measurement of time, mass,	
mode)	displacement, velocity, acceleration, force and	
- Measure of variation (standard deviation,	weight	
variance, range and interquartile range)	- Difference between position, displacement and	
- Interpret and draw inferences from measure	distance	
of location and variation.	 Difference between mass and weight 	
- Understand and apply coding to measure of	- Derive velocity, acceleration an	
location and spread	- Mathematical modelling	
	- Assumptions in mechanics	
Data presentation and interpretation (part 2)	Kinematics 1	
- Draw and interpret box plot, cumulative	- Language of kinematics	
frequency and histogram	- Speed time graph	
 Identify and interpret possible outlier 	 Velocity time graphs 	
- Compare two sets of data	- Displacement time graph	
- Select and critique data presentation	- Derive and apply the SUVAT formula	
techniques	- Kinematics problems with constant acceleration	
- Clean up data including missing data, outlier	 Vertical motion under gravity 	
and error		
Correlation and regression	Forces and Newton's laws of motion	

Interpret scatter diagrams of bivariate date Interpret Regression lines for bivariate data Make predictions with the regression line and understand its limitation Understand informal interpretation of correlation Know that correlation does not imply causation Outlier and scatter graph/regression Critique data presentation techniques in the context of the problem ility	 Types of forces Forces in equilibrium Newton's first law of motion Application of Newton's second law of motion Apply Newton's third law of motion
causation Outlier and scatter graph/regression Critique data presentation techniques in the context of the problem	
ility	
Mutually and independent events in calculating probabilities Linking discrete and continuous distributions Venn diagrams and its constituent parts Probability tree diagrams	 Kinematics 2 (Variable acceleration) Use differentiation to model motion in a straight line for a particle moving with variable acceleration. Gradient of relevant graphs links to rate of change Find max and minimum velocity Use integration to model motion in a straight line of a particle moving under the action of a variable force Use integration to evaluate area under a graph Use initial conditions to calculate the constant of integration.
cal distributions Discrete probability distribution Binomial distribution Calculate probabilities using binomial distribution	
cal sampling	
Population and sampling Probabilistic sampling techniques, advantages and disadvantages Non-probabilistic techniques, advantages, and disadvantages Know how to use samples to make inferences about the population Select and critique a sampling techniques in	
	Linking discrete and continuous distributions Venn diagrams and its constituent parts Probability tree diagrams Probability tree diagrams cal distributions Discrete probability distribution Binomial distribution Calculate probabilities using binomial distribution cal sampling Population and sampling Probabilistic sampling techniques, advantages and disadvantages Non-probabilistic techniques, advantages, and disadvantages Know how to use samples to make inferences about the population

 Know that the use of different types of 	
sample can lead to different conclusions	
about a population	
Statistical hypothesis testing	
 Language of statistical hypothesis testing 	
developed through binomial distribution	
- Conduct a statistical hypothesis testing for	
proportion in the binomial distribution and	
interpret results	
- Understand that the sample is being used	
make an inference about the population	
 Appreciate the fact that the significance 	
level is the probability of rejecting the null	
hypothesis	
-	
Mock 2 Exam	