Year 13 Pure		
Teacher A	Teacher B	
 Algebraic methods and proof Know and apply the various types of proof (proof by contradiction, exhaustive proof etc Add and subtract algebraic fractions Multiply and divide algebraic fractions Application of the factor theorem Factorising polynomial completely Partial proper fractions Algebraic division 	 Functions and modelling Modulus function and its graphs Solve equations and inequalities involving modulus functions Domain and range of functions One-to-one and many-to-one functions Composite functions Inverse of a function and sketch the graphs Conditions for inverse function to exist Transformation of functions Composite transformation of functions and 	
	 describe their effect geometrically Solve problems involving modulus and transformation 	
Series and sequences	Binomial Expansion	
 Difference between sequence and series Convergent and divergent sequence Difference between arithmetic and geometric sequence Nth term and sum of terms of AP Nth term and sum of terms of GP Sum of GP to infinity and conditions Solve problems involving AP and GP The use of the sigma notation Difference between increasing, decreasing and periodic sequence Application of recurrence and iteration to 	 expansion fails when the power is not an whole number Binomial expansion for negative and fractional powers Binomial expansion and problem solving Partial fraction and binomial expansion Percentage error 	
solve sequence problems	smont 1	

Radian	Parametric equations
- Understand the definition of radian	- Understand the difference between catesian
- Convert between radian and degree	and parametric systems of expressing
- Exact value of sin, cos and tan in radian	coordinates
- Derive and us ethe formula for arc length	- Convert between parametric and cartesian
and area of sector	coordinates
- Solve trigonometric equations with a	- Plot and sketch curves in parametric form
given interval in radian	- Solve coordinate geometry problems using
- Application of the two trig identities	parametric equations
taught in year 12 to solve trig equations	- Recognise some standard curves in
- Small angle approximation for sin, cos	parametric and use them to solve problems
and tan.	
Trigonometric functions	Differentiation
- Understand secant, cosecant and	- Find the derivative of sinx and cosx from
cotangent and their graphs	first principle
- Simplify expressions and solve equations	- Differentiate e ^{kx} and lnx functions and
involving sec, cosec and cot	sketch their graphs
- Derive and apply identities for sec, cosec	- Equation of tangents and normal to $y = e^{kx}$
and cot and apply them to solve tri	and $y = lnx$ functions
equations	- Know and apply the chain rule
- Work with the inverse trig functions and	- Know and apply the product rule
sketch their graphs	- Know and apply the quotient rule
- Trigonometric proofs	- Apply differentiation rules to trig functions
	- Parametric differentiation
	- Gradient at a given point from a parametric
	equations
	- Equation of tangent and normal to
	parametric functions
	- Implicit differentiation involving two
	variables
	- Gradient of a curve using implicit
	differentiation
	- Stationary point and implicit differentiation
	- Nature of stationary point and rate of change

	- Find the value of an exponential function
	after a given time
	- Equation of exponential growth problems
Mock Exam (Everything including year 12 v	vork except: Integration, vectors and numerical
me	thods)
Trigonometry and modelling	Integration
Trigonometry and modelling-Use the compound angle identities to rearrange expressions-Use the compound angle identities to rearrange and solve equations-Proof geometrically the three compound angle formulae-Prove other identities using the compound angle identities-Double angle formula and other identities-Triple angle formula and other identities-Triple angle formula and other identities-Solve equations of the form $a \cos \theta + b \sin \theta$ as a single sine or cosine function-solve equations of the form $a \cos \theta + b \sin \theta = c$ in a given interval-Modell and solve trig functions to solve problems in context, including those involving vectors, kinematics and forces	 Integration by inspection using the reverse of differentiation Know that integral of 1/x = lnx and integral of e^x = e^x Integration by substation Integration by part Integration of trigonometric expressions recognise integrals of the form ∫ f'(x) dx f(x) = ln f(x) + c; Use trigonometric identities to manipulate and simplify expressions to a form which can be integrated directly. Integrating rational expressions by using partial fractions with linear denominators Simplify integral of rational functions using the laws of logarithm Area under a curve or between two given points
Numeric method	 Use the trapezium rule to estimate area under a curve and determine if it overstate or understate the actual area. Write a differential equation from worded problems Solve differential equation Find particular solutions of differential equations
Looto poto by considering shares in	
- Locate roots by considering change in	
sign	

-	Use numerical methods to solve solutions	
	of equations	
-	Iteration	
-	Staircase and cobweb diagram	
-	Convergence and iteration	
-	Solve equations approximately using	
	Newton-Raphson method	
-	Understand that the Newton-Raphson	
	method works in geometrical terms	
-	Problem solving and numerical method	
Vecto	rs	•
-	Vectors in three dimensions	
-	Vectors in three dimensions Magnitude of 3D vectors	
-	Vectors in three dimensions Magnitude of 3D vectors Unit vector and its application	
- - -	Vectors in three dimensions Magnitude of 3D vectors Unit vector and its application Add and subtract 3D vectors	
	Vectors in three dimensions Magnitude of 3D vectors Unit vector and its application Add and subtract 3D vectors Scalar multiplication of 3D vectors	
	Vectors in three dimensions Magnitude of 3D vectors Unit vector and its application Add and subtract 3D vectors Scalar multiplication of 3D vectors Position vectors and distance between	
	Vectors in three dimensions Magnitude of 3D vectors Unit vector and its application Add and subtract 3D vectors Scalar multiplication of 3D vectors Position vectors and distance between two points	
	Vectors in three dimensions Magnitude of 3D vectors Unit vector and its application Add and subtract 3D vectors Scalar multiplication of 3D vectors Position vectors and distance between two points Vectors and problem solving	

Year 13 Applied	
Teacher A- Statistics	Teacher B- Mechanics
Regression, correlation and Hypothesis testing - Change variables of regression line by using logarithms	Forces at any angle (part 1) Language of forces Identify all forces acting on a particle and
 Estimate values from regression line Correlation coefficient interpretation Product moment correlation coefficient and its interpretation Hypothesis testing of PMCC 	 represent them diagrammatically Finding the resultant force (magnitude and direction) Resultant of several concurrent forces Resolve forces into components and select suitable resolutions
Probability-Use probability formulae and notations-Use probability tree diagrams-Use probability tree diagrams and its components-Use two-way table-Use the conditional probability formula $P(A B) = \frac{P(A \cap B)}{P(B)}$ -Model with probability-Critique assumptions made and the likely effect of more realistic assumptions	Further kinematics (part 1)-Use of constant acceleration formulae-Position vectors, velocities, acceleration, and displacement in vector form-Language of kinematics in 2D-Use velocity triangles and problem solving-SUVAT constant acceleration in 2D-Apply the equations of motion to i, j vector problems-Use $v = u + at$, $r = ut + \frac{1}{2}at^2$ etc. with vectors given in i, i or column vector form.
 Normal distribution Properties of normal distributions Calculate probabilities from normal distributions know the position of the points of inflec- tion of a Normal distribution. Mean and variance of a normal distribu- tion Understand and apply continuity correc- tions Use the Normal distribution as an approx- imation to the binomial distribution. Statistical hypothesis test for the mean of normal distributions 	 Application of kinematics – Projectile Understand factors affecting projectile Find time of flight of a projectile Find range and maximum height of a projectile derive formulae to find the greatest height, the time of flight and the horizontal range (for a full trajectory) Modify projectile equations to take account of the height of release; Derive and use the equation of the path.

- Interpret results of the hypothesis testing	
in context	
	Forces at any angle (part 2)
	 Understand that a rough plane creates
	frictional force which act against direction
	of motion
	- Roughness' of two surfaces is represented a
	coefficient of friction represented by μ ;
	- Know that $0 \le \mu$ but that there is no theoreti-
	cal upper limit for μ although for most sur-
	faces it tends to be less than 1 and that a
	'smooth' surface has a value of $\mu = 0$;
	- Draw force diagrams involving rough sur-
	faces which include the frictional force
	- Limiting equilibrium formula $F \leq \mu R$.
	Application of forces (part 1)
	- Equilibrium under a set of concurrent forces
	(resultant = 0)
	 Vectors representing forces in equilibrium
	form a closed polygon;
	- Solve problems involving equilibrium of a
	particle under coplanar forces, including par-
	ticles on inclined planes and 2D vectors;
	- Understand and apply Newton's second law
	of motion
	- F = ma for 1 dimensional motion
	- Formulate and solve equations of motion for
	a particle in 2D motion where the resultant =
	ma
	- Formulate and solve equations of motion for
	connected particles, where one of the parts
	could be inclined and/or on a rough plane.
	Further kinematics (part 2)
	- Extend techniques for 1D to 2D by using vectors
	of equations for variable forces/acceleration

 Know and apply the language and notation for
Kinematics for variable motions in 2D
Moment: forces' turning effect
- Know that moment = perpendicular force times
distance
- Draw mathematical model to represent
horizontal rod problems
- Conditions for equilibrium and apply them
- Solve problems when a beam is at the point of
tilting
Applications of forces (part 2)
- Solve statics problems for a system of forces
which are not concurrent (ladder) and apply the
principles of moments for forces at any angle