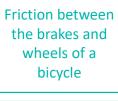

Physics Paper 1

for Combined Science

The Basics Booklet

Energy-The Basics Units: Give the names of the different types of energy stores Symbol Value Name Energy Mass Speed Spring Constant Extension What is the first Law of Thermodynamics: Height Give the energy transfers in the following examples: Gravitational Field Strength An electric kettle Temperature Change A battery Specific Heat powered torch Capacity A skydiver diving Power A car crashing Time into a wall

Energy– The Basics	Steps to Success		
Define the following Key Words	Give the equation that links the following variables:		
System	Kinetic Energy, Mass, Speed		
Kinetic Energy	Elastic Potential Energy, Extension, Spring Constant		
Elastic Potential Energy	Gravitational Field Strength, Gravitational Potential Energy, Height, Mass		
Gravitational Potential Energy	Change in Thermal Energy, Mass, Specific Heat Capacity, Temperature Change		
Specific Heat Capacity	Change in Thermal Energy, Mass, Specific near Capacity, Temperature Change		
Power	Energy Transferred, Power, Time		
Closed System	Power, Time, Work Done		
Dissipated	Efficiency, Total Power Input, Useful Power Output		
Renewable	Efficiency, Total Input Energy Transfer, Useful Output Energy Transfer		
Non-Renewable			


Circle the diagram above that shows the most efficient device.

Explain how you could make these devices more efficient:

Sound created by a vibrating washing machine

A building that is losing a lot of heat

· -		

Complete the table for facts about the different energy resources:

	Energy Resource	Renewable ?	Advantage	Disadvantage
1				

Potential

Difference

Resistance

What type of supply is the mains

What is the frequency of the UK

UK domestic electricity supply?

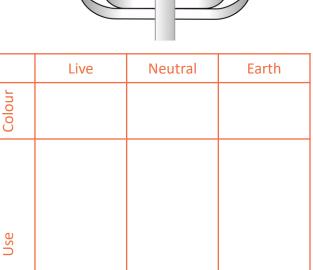
What is the potential difference of the

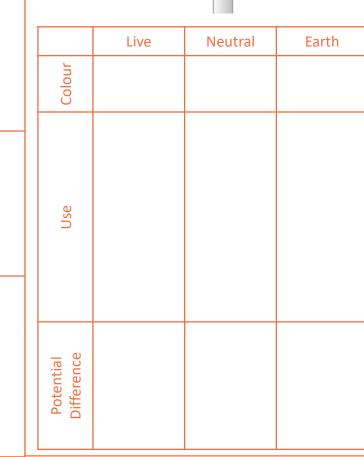
domestic electricity supply?

electricity in the UK?

Mains Electricity

Resistance


Alternating potential


difference

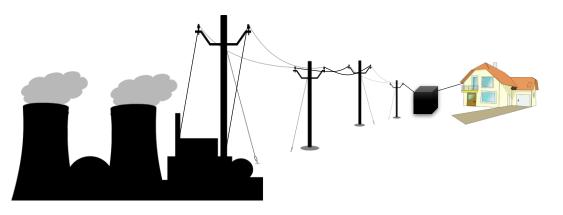
Current Potential Difference

Direct potential

difference

Electricity – The Basics

Steps to Success

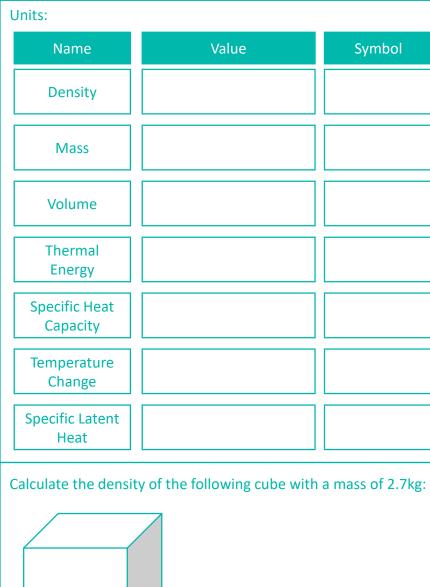

Energy Transfers

Give the energy transfers in the following devices:

Device	Input	Useful output	Waste output
Battery operated torch			
Mains electric fan			
Mains electric heater			

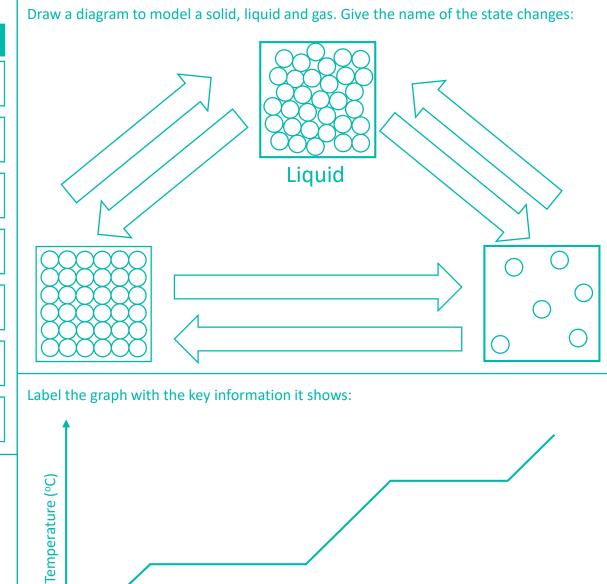
The National Grid

Label the key parts:



Define what each of these transformers do:

Step Up Transformers

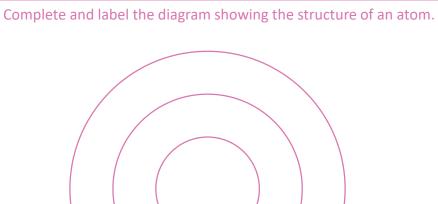

Step Down Transformers

3m

Density:

Unit:

Time (mins)


Particle Model – The Basics	Steps to Success		
Define the following Key Words	Give the equation that links the following variables:		
Density	Density, Mass and	d Volume	
Physical Change	Change in Therma	al Energy, Mass, Specific Heat	t Capacity&Temperature Chan
Internal Energy	Energy for a Chan	ge of State, Mass, Specific La	tent Heat
Kinetic Energy	Compare Specifi	c Latent Heat & Specific Heat	: Capacity
Potential Energy		Specific Latent Heat	Specific Heat Capacity
Specific Heat Capacity	Temperature Change		
Specific Latent Heat	State Change		
Specific Latent Heat of Vaporisation			
Specific Latent Heat of Fusion	Energy Used		

Labels

Nucleus Proton Electron

36

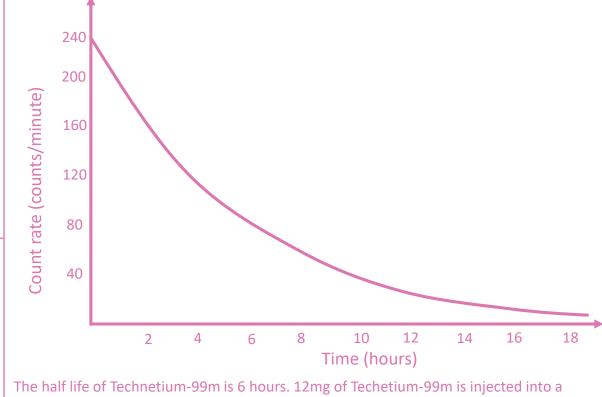
Neutron Fill in the missing gaps for the following atoms: **Number of Number of Number of Element Atomic Mass** electrons protons neutrons Lithium Argon Calcium 20

30

Complete the nuclear equations:

$$\begin{array}{ccc}
219 & - & - \\
86 & \text{radon} & \rightarrow & - & \text{polonium} & + & - & \text{He}
\end{array}$$

Which type of nuclear radiation is this?


The emission of this type of radiation causes:

The charge of the nucleus to increase but the mass stays the same

The mass and the charge of the nucleus do not change

The charge of the nucleus and the mass decrease

The half life of Technetium-99m is 6 hours. 12mg of Technetium-99m is injected into a patient and starts to decay into Technetium-99.

Calculate the amount of Technetium 99m present in the patient after 24 hours.

Calculate the amount of Technetium-99 in the patient after 48 hours.