

Physics Paper 1 for Combined Science

The Basics Booklet

Energy– The Basics

Energy– The Basics	Steps to Success
Define the following Key Words	Give the equation that links the following variables:
System	Kinetic Energy, Mass, Speed
Kinetic Energy	Elastic Potential Energy, Extension, Spring Constant
Elastic Potential Energy	Gravitational Field Strength, Gravitational Potential Energy, Height, Mass
Gravitational Potential Energy	Change in Thermal Energy, Mass, Specific Heat Capacity, Temperature Change
Specific Heat Capacity	
Power	Energy Transferred, Power, Time
Closed System	Power, Time, Work Done
Dissipated	Efficiency, Total Power Input, Useful Power Output
Renewable	Efficiency, Total Input Energy Transfer, Useful Output Energy Transfer
Non-Renewable	

Energy– The Basics

RevisingScience.com

Complete the table for facts about the different energy resources:

ful	Energy Resource	Renewable ?	Advantage	Disadvantage
device.				
nt:				

Key Terms			Circuit Symbols		
Electric Current			Switch (open)	LED	
National Grid					
Units			Switch (closed)	Lamp	
Measurement	Unit	Symbol			
Charge Flow			Cell	Fuse	
Current			Battery	Voltmeter	
Time					
Potential Difference			Diode	Ammeter	
Resistance			Resistor	Thermistor	
Power					_
Energy Transferred			Variable Resistor	LDR	

Equations	Resistors					
Complete the equations that link these terms: Charge flow, Current & Time:		Graph	Description			
Current, Potential Difference & Resistance:	Ohmic conductor					
Current, Potential Difference & Power:	Filament Lamp					
Current, Potential Difference & Resistance:	Diode					
Charge Flow, Energy Transferred & Potential Difference:	Ther	mistor	LDR Use:			

RevisingScience.com

Circuit Rules	Give the rules for current, pote	ential diff	ference, and r	esistance ir	these circuits:		Mains El	ectricity		
Current	Series Circuit		Current	Parall	el Circuit			2		3 4 5
Potential Difference			Potential Difference				Colour	Live	Neutral	Earth
Resistance			Resistance				Use			
What type o electricity in	f supply is the mains the UK?	Alt dif	ernating pote ference	ential	Direct potential difference					
What is the f domestic ele What is the f UK domestic	frequency of the UK ectricity supply? potential difference of the c electricity supply?					-	Potential Difference			
on domestic	cicculary supply.				1					

Energy Transfers

Give the energy transfers in the following devices:

Device	Input	Useful output	Waste output
Battery operated torch			
Mains electric fan			
Mains electric heater			

The National Grid Label the key parts:

Define what each of these transformers do:

Step UpStep DownTransformersTransformers

Particle Model – The Basics

Particle Model – The Basics			Steps to Success
Define the following Key Words	Give the equation	that links the following var	iables:
Density	Density, Mass and V	Volume	
Physical Change	Change in Thermal	Energy, Mass, Specific Heat	t Capacity&Temperature Chang
Internal Energy	Energy for a Change	e of State, Mass, Specific La	itent Heat
Kinetic Energy	Compare Specific I	Latent Heat & Specific Heat	t Capacity
Potential Energy		Specific Latent Heat	Specific Heat Capacity
Specific Heat Capacity	Temperature Change		
Specific Latent Heat	State Change		
Specific Latent Heat of Vaporisation			
Specific Latent Heat of Fusion	Energy Used		

Particle Model – The Basics	RevisingScience.com
Particle Motion in Gases	How much heat energy is required to raise the temperature of 5kg of aluminium by 10°C. The specific heat capacity of aluminium is 900 J/kg°C.
The molecules of a gas are in constant motion.	
Draw the relationship between the temperature of a gas and its pressure at a constant volume:	
	Energy: Calculate the Specific Heat Capacity of Brass. It takes 7768J of heat energy to heat 0.9kg of solid brass from 10°C to 33°C. Give your answer to 3 significant figures.
Describe the relationship between the temperature of a gas and its pressure at a constant volume:	Specific Heat Capacity: How much heat energy does it take to tun 350g of boiling water into steam. The specific latent heat of fusion of ice is 335,000J/kg. The specific latent heat of vaporisation is 2,260,000J/kg
Explain the relationship between the temperature of a gas and its pressure at a constant volume:	Heat Energy: How much energy is needed to freeze 500 grams of water at 0°C?

Energy:

Atomic Structure – The Basics

Key Terms:	Complete and label the diagram showing the structure of an atom.	
Mass Number		Labels Nucleus
Atomic Number		Proton Electron Neutron
Isotope		
lon		
Activity	Fill in the missing gaps for the following atoms:	
Half Life	Element Atomic Mass Number of neutrons	Number of electrons
	Lithium	
Contamination	Argon	
	Calcium	
Irradiation	20	
Irradiation	20 30	

Atomic Structure – The Basics

RevisingScience.com

Complete the end of the sentences below:	Give the number to the	e following facts			
All atoms of the same element have the same number of	The radius of an atom in metres	The charge on an electron	The atomic number of Sodium	The mass number of Sodium	
An isotopes of an element has a different number of					
An ion is an element that has lost or gained an	The number of neutrons in Sodium	The mass of a proton	The number of electrons in an alpha particle	The number of protons in a helium nuclei	
Number the sentences in the correct order:					
The discovery of the proton					
	Which type of nuclear i	radiation is this?			
	Electromagnetic radiation from the nucleus				
The nucleus becomes an accepted scientific idea	This consists of two neutrons and two protons, it is the same as a helium nucleus				
Niels Bohr suggested that electrons orbit the nucleus at specific distances	The mo	st penetrating type of r	adiation		
The discovery of the electron	The le	east ionising type of rac	liation		
	A high speed electror	n ejected from the nucl	eus as a neutron turns		
James Chadwick provides evidence to show the existence of the neutron	The m	nost ionising type of rad	diation		

Atomic Structure – The Basics

