Waves

Organise the method used to prepare a microscope slide:

- Switch on the vibration generator. The elasticated cord should start to vibrate.
- Calculate the speed of the wave using the equation: wave speed $=$ frequency x wavelength.
- Adjust the tension in the string or move the wooden bridge to adjust the length of the string, until a clear wave pattern is seen.
- Attach the signal generator to the vibration generator.
- The frequency is the frequency of the power supply.
- The waves should look like they are stationary.
- Use a metre ruler to measure across as many half wavelengths as possible (a half wavelength is one loop).
- Then divide the total length by the number of half waves. Multiplying this number by two will give the wavelength.
- Attach one end of a piece of elasticated cord to the signal generator and some masses on a pully to the other.

Speed Of Waves

Rearrange this formula to find:

Formula

Speed = Frequency x Wavelength
Frequency $=$

Wavelength =

Units of Speed are. \qquad Units of Frequency are. \qquad Units of Wavelength are. \qquad
Help?
$100 \mathrm{~cm}=1 \mathrm{~m}$
$\mathrm{~cm} \rightarrow \mathrm{~m} \div 100$
$\mathrm{~m} \rightarrow \mathrm{~cm} \times 1000$
$1 \mathrm{~cm}=100 \mathrm{~m}$

Precision and Accuracy

Describe and Explain how these changes would affect Precision and Accuracy:

Measuring the wavelength in mm
Affect: \qquad
Explanation: \qquad

Repeating the wavelength measurements, removing anomalous results and doing a mean average. Affect: Explanation: \qquad

One of your own suggestions:

Calculations

Use the equations opposite to calculate the following:

1. If the frequency of the wave is 100 Hz and the wavelength is 0.25 m , what is the speed of the waves?
2. If the frequency of the wave is 250 Hz and the wavelength is 0.2 m , what is the speed of the waves?
3. If the frequency of the wave is 300 Hz and the wavelength is 10 cm , what is the speed of the waves? (Remember to convert to m)
4. If the frequency of the wave is 1000 Hz and the wavelength is 2 cm , what is the speed of the waves? (Remember to convert to m)

Plan Without turning over (!) write a step by step plan for measuring the speed of a waves.	Variables:
	State what the variables are:
	Independent:
	Dependent:
	Control Variables:
	1..............................
	How would you control this variable so it did not affect the results?
	\square
	2...............................
	How would you control this variable so it did not affect the results?
	-
	How would changing the mass affect the tension in the elastic?
	How would it affect the speed of the wave? Why?

